

ELIZADE UNIVERSITY ILARA-MOKIN

FACULTY: Basic and Applied Sciences DEPARTMENT: Physical and Chemical

SECOND SEMESTER B.Sc DEGREE EXAMINATIONS

2017/2018 ACADEMIC SESSION

COURSE CODE: AGP 418

COURSE TITLE: RADIOMETRIC PROSPECTING METHOD

DURATION: 2 Hours

Calada Carala

TOTAL MARKS: 60 MARKS

Matriculation Number: _____

INSTRUCTIONS:

- 1. Write your matriculation number in the space provided above and also on the cover page of the exam booklet.
- 2. This question paper consists of 2 pages including this page.
- 3. Attempt any three (3) questions.

- 1 (a) Discuss various modes of interaction of gamma rays with matter.
 - (b) Write on the following:
 - i. Quenching agent; and ii. Ionization chamber

20 Marks

2 (a) From the following transition of a radioelement X to Y:

i.
$$_{j}^{i+j}X + e^{-} \rightarrow_{j-1}^{i+j}Y$$
 ii. $_{j}^{i+j}X \rightarrow_{j-2}^{i+j-4}Y + _{2}^{4}He$ iii. $_{j}^{i+j}X \rightarrow_{j+1}^{i+j}Y + e^{-}$.

- i. Identify the type of transition involved in each of the above reactions
- ii. Describe the condition of the atom X before and after its transformation to the element Y.
- (b) Explain concisely nuclear disintegration

20 Marks

- 3 (a) Describe the term half-life of a radionuclide and show that the half-life of an element, $T_{1/2} = 0.693 \lambda^{-1}$
 - (b) Discuss various modes of interaction of gamma rays with matter.

20 Mark

- 4 (a) Describe a 4 channel gamma ray spectrometer using a block diagram.
 - (b) Explain with a graph how a Geiger Muller counter will respond to different voltage during radioactive measurement.

20 Marks

- 5 (a) Discuss in detail, the operational principles of Geiger Muller counter.
- (b) Explain in relationship to mode of γ -ray interaction with matter, the γ -ray absorption efficiency in sodium iodide crystal. Use diagram where applicable.

20 Marks

- 6. The table given shows the readings obtained with a γ -ray spectrometer along a traverse perpendicular to foliation across a granite-gneiss outcrop. Given that $k_1 = 0.6$, $k_2 = 0.13$, $k_3 = 0.02$, $S_1 = 1.0$, $S_2 = 1.5$, and $S_3 = 1.7$;
 - (i) determine the Th, U and K content at each station
 - (ii) plot profiles for each element as well as a profile of the Th: U ratio.

Station	Spectrometer readings (cpm)			
		Tc	Uc	Kc
0		13	28	198
100		8	27	243
200		25	36	218
300		15	30	193
400		15	30	197
500		` 8	21	233

20 Marks